

KuberTENes is now a teenager, how did we get here?

Michael Bang Snr Solutions Architect Henrik Løvborg Tech Sales Leader

The birth of Kubernetes

Where did it all begin?

Containers

First expressed as a concept in 2006 by Google Engineer Rohit Seth. Popularised by Docker from 2013

Microservices

Driven by the possibilities of containerisation and the challenges that come with ever growing monoliths, microservice architecture is becoming more and more popular.

Cloud

Led by AWS, cloud is a central theme in the time kubernetes is born.

Leads to Kubernetes announced by Google in 2014

Open sourced with the help of Red Hat

Google engineers realise the potential of their project and that they will need a community to scale it, which ends up with Google first open sourcing of a project

A lightweight container orchestration engine

First commit June 6 2014

250 files and 47.501 lines of Go, Bash and Markdown make up the first commit of Kubernetes, by Google

Announced at Dockercon June 10 2014

Google VP of Infrastructure, Eric Brewer announces the open sourcing of Kubernetes in his keynote speech at Dockercon 2014 in San Francisco

Kubernetes: The Documentary Available on YouTube

The Origin Story

Released on YouTube and tells the details of the story of kubernetes with Google and Red Hat engineers involved in the process. A thrilling story in 2 parts.

Source:

6

https://www.youtube.com/watch?v=BE77h7dmoQU&t=1s

One click install?

Seems not - a new guide becomes the sys admins best friend

kelseyhightower/ **kubernetes-the-hard-way**

Bootstrap Kubernetes the hard way. No scripts.

A52S18S40kS14kContributorsUsed byStarsForks

Source: Insert source data here Insert source data here

7

The final platform?

Or just the beginning

@kelseyhightower

Kubernetes is a platform for building platforms. It's a better place to start; not the endgame.

1:04 PM - 27 Nov 2017

8

One company to rule it all?

Major companies join forces for governing organ

Founding members include Google, CoreOS, Mesosphere, Red Hat, Twitter, Huawei, Intel, RX-M, Cisco, IBM, Docker, Univa, and VMware.

Cloud Native Compute Foundation established

Establishes Working Groups and CNCF Landscape

With SIGs, TAGs and working groups, all relevant projects are governed and the direction is set by a multitude of actors in true open source fashion

 \square

Maturity Model, Certifications and The CNCF Landscape

Establishes important maturity components like the lifecycle model for projects, certifications for a range of skills and the notorious CNCF landscape to help navigate the many options

The Container Orchestration Wars

The Breakthrough

11

Why did Kubernetes break through?

- Everything as code
 - Automation GitOps
- Desired state
- Scalability
- Extensibility
- Resilience
- Technology agnostic
- Microservices
- DevOps
- Community

Burr Sutter: 9 steps to awesome

Available on YouTube

9 steps to awesome ...

3 hours of showcasing the cool functions in Kubernetes. The video is 5 years old, but still highly relevant.

Source:

13

https://www.youtube.com/watch?v=ZpbXSdzp_vo

A Brief History of Kubernetes and OpenShift

- Kubernetes
 - Makes up the core of OpenShift
 - An open-source project introduced by Google in 2014
 - Based on Google's extensive experience running very large scale distributed applications in containers
- Red Hat, IBM, and CoreOS joined the Kubernetes Community that same year
- Kubernetes v1.0 and OpenShift 3.0 were released in mid 2015

VIRTUAL MACHINES AND CONTAINERS

- VM Isolation
- Complete OS
- Static Compute
- Static Memory
- High Resource Usage

Container Isolation
 Shared Kernel
 Burstable Compute
 Burstable Memory
 Low Resource Usage

Inject data

- Environment Variables
- ConfigMaps
- Secrets

Demo

- Deployment of an application
- Desired state (restart of pod)
- Inject an environment variable

Scaling

- Without Kubernetes
 - Setting up a load balancer
 - Setting up certificates
- With Kubernetes
 - Batteries included (Services, Ingress, Routes...)

Scaling - Demo

- Scale a deployment

Liveness and Readiness

20

Readiness - Demo

- Add readiness and liveness probe to deployment
- Scale deployment (real ready state reflected)

projects isolate apps across environments, teams, groups and departments

Pets vs Cattle

Pets vs. Cattle

What is GitOps?

An developer-centric approach to Continuous Delivery and infrastructure operation

GitOps Workflow

a declarative approach to application delivery

Java and .NET in containers

Designed for **Throughput**

At the expense of **footprint**

Rich dynamic behavior built for **mutable** systems

containers are

primarily

Persistent Volume and Claims

Databases on Kubernetes ?

Databases for non-production environments

Pointing to external databases for production

Full RDBMS in production on Kubernetes

Virtualization native to Kubernetes

- Operators are a Kubernetes-native way to introduce new capabilities
- New CustomResourceDefinitions (CRDs) for native VM integration, for example:
 - VirtualMachine
 - VirtualMachineInstance
 - VirtualMachineInstanceMigration
 - DataVolume

```
apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 labels:
   app: demo
   flavor.template.kubevirt.io/small: "true"
 name: rhel
spec:
 dataVolumeTemplates:
 - apiVersion: cdi.kubevirt.io/v1alpha1
   kind: DataVolume
   metadata:
     creationTimestamp: null
     name: rhel-rootdisk
   spec:
     pvc:
       accessModes:
       - ReadWriteMany
        resources:
          requests:
           storage: 20Gi
       storageClassName: managed-nfs-storage
       volumeMode: Filesystem
```


Ways of working

Application and Platform model

Collaborating on shared problems

The Future

Robust. Proven. Award winning.

202

Multicluster lifecycle management

Ð

Policy driven governance, risk, and compliance

Advanced application lifecycle management

Multicluster observability for health and optimization

Thank you

Red Hat is the world's leading provider of enterprise open source software solutions. Award-winning support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500.

